Rabu, 07 Mei 2025

Tugas Pendahuluan Modul 2 Up & Uc Percobaan 1






1. Prosedur [kembali]
    Langkah-langkah percobaan :


1. Rangkai rangkaian di proteus sesuai dengan kondisi percobaan.

2. Buat program untuk mikrokontroler STM32F103C8 di software STM32 CubeIDE.

3. Compile program dalam format hex, lalu upload ke dalam mikrokontroler.

4. Setelah program selesai di upload, jalankan simulasi rangkaian pada proteus.

5. Selesai.


2. Hardware dan Diagram Blok [kembali]
        A. Hardware
            1. Mikrokontroler STM32F103C8




            2. LDR










            3. DC Motor
  





             4. Power Supply









              5. Buzzer



                 6. Push Button





          B. Blok Diagram



3. Rangkaian Simulasi dan Prinsip Kerja [kembali]
           A. Rangkaian Simulasi

- Rangkaian sebelum dijalankan


- Rangkaian setelah dijalankan



- Prinsip kerja

        Pada rangkaian ini terdiri dari beberapa komponen yaitu LDR, DC Motor, Push Button, Buzzer dan Mikrokontroler. Dimana LDR (Light Dependent Resistor) sebagai inputan, buzzer dan motor dc sebagai ouput serta push button sebagai interrupt. Disini rangkaian telah diberikan kode program untuk mikrokontrollernya dimana telah di atur threshold untuk pengkondisian agar buzzer dapat aktif dan mati serta motor dc dapat bekerja sesuai duty cycle dari kondisi yang diinginkan. Push button bekerja sebagai interrupt untuk memberi kondisi baru di tengah kondisi yang sedang berjalan. 

4. Flowchart dan Listing Program [kembali]
        A. Flowchart






        B. Listing Program  
    

#include "main.h"


/* Private variables ---------------------------------------------------------*/

ADC_HandleTypeDef hadc1;

TIM_HandleTypeDef htim1;

TIM_HandleTypeDef htim2;


/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_ADC1_Init(void);

static void MX_TIM1_Init(void);

static void MX_TIM2_Init(void);


int main(void)

{

HAL_Init();

SystemClock_Config();

MX_GPIO_Init();

MX_ADC1_Init();

MX_TIM1_Init();

MX_TIM2_Init();


HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1); // Motor PWM

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); // Buzzer PWM

HAL_ADC_Start(&hadc1);


uint8_t buzzer_enabled = 1;

uint32_t last_buzzer_change = 0;

uint8_t buzzer_freq_index = 0;


const uint32_t buzzer_periods[] = {143999, 71999, 47999}; // Frekuensi berbeda


// Threshold (dari rendahsedangtinggi)

const uint16_t THRESH_LOW = 1800;

const uint16_t THRESH_MID = 3200;


while (1)

{

HAL_ADC_Start(&hadc1);

HAL_ADC_PollForConversion(&hadc1, 10);

uint32_t adc_val = HAL_ADC_GetValue(&hadc1);


// --- Motor Control ---

if (adc_val < THRESH_LOW)

{

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 32767); // Lambat

}

else if (adc_val < THRESH_MID)

{

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 45874); // Sedang

}

else

{

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 1000); // Cepat

}


// --- Buzzer Logic ---

if (adc_val < THRESH_LOW && buzzer_enabled)

{

// Ubah frekuensi buzzer setiap 500ms

if (HAL_GetTick() - last_buzzer_change >= 500)

{

last_buzzer_change = HAL_GetTick();

buzzer_freq_index = (buzzer_freq_index + 1) % 3;


uint32_t period = buzzer_periods[buzzer_freq_index];

__HAL_TIM_SET_AUTORELOAD(&htim2, period);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, period / 2); // 50% duty

}

}

else

{

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Matikan buzzer

}


// --- Button Logic (PB0 ditekan = nonaktifkan buzzer) ---

if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0) == GPIO_PIN_SET)

{

buzzer_enabled = 0;

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Paksa matikan buzzer

}


HAL_Delay(10);

}

}



void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};


/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}


/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;


if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();

}

PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;

PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;

if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)

{

Error_Handler();

}

}


/**

* @brief ADC1 Initialization Function

* @param None

* @retval None

*/

static void MX_ADC1_Init(void)

{


/* USER CODE BEGIN ADC1_Init 0 */


/* USER CODE END ADC1_Init 0 */


ADC_ChannelConfTypeDef sConfig = {0};


/* USER CODE BEGIN ADC1_Init 1 */


/* USER CODE END ADC1_Init 1 */


/** Common config

*/

hadc1.Instance = ADC1;

hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

hadc1.Init.ContinuousConvMode = DISABLE;

hadc1.Init.DiscontinuousConvMode = DISABLE;

hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

hadc1.Init.NbrOfConversion = 1;

if (HAL_ADC_Init(&hadc1) != HAL_OK)

{

Error_Handler();

}


/** Configure Regular Channel

*/

sConfig.Channel = ADC_CHANNEL_0;

sConfig.Rank = ADC_REGULAR_RANK_1;

sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;

if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN ADC1_Init 2 */


/* USER CODE END ADC1_Init 2 */


}


/**

* @brief TIM1 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM1_Init(void)

{


/* USER CODE BEGIN TIM1_Init 0 */


/* USER CODE END TIM1_Init 0 */


TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};

TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};


/* USER CODE BEGIN TIM1_Init 1 */


/* USER CODE END TIM1_Init 1 */

htim1.Instance = TIM1;

htim1.Init.Prescaler = 0;

htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

htim1.Init.Period = 65535;

htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim1.Init.RepetitionCounter = 0;

htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;

sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;

if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)

{

Error_Handler();

}

sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;

sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;

sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;

sBreakDeadTimeConfig.DeadTime = 0;

sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;

sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;

sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;

if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM1_Init 2 */


/* USER CODE END TIM1_Init 2 */

HAL_TIM_MspPostInit(&htim1);


}


/**

* @brief TIM2 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM2_Init(void)

{


/* USER CODE BEGIN TIM2_Init 0 */


/* USER CODE END TIM2_Init 0 */


TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};


/* USER CODE BEGIN TIM2_Init 1 */


/* USER CODE END TIM2_Init 1 */

htim2.Instance = TIM2;

htim2.Init.Prescaler = 0;

htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 65535;

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM2_Init 2 */


/* USER CODE END TIM2_Init 2 */

HAL_TIM_MspPostInit(&htim2);


}


/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */


/* USER CODE END MX_GPIO_Init_1 */


/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();


/*Configure GPIO pin : PB0 */

GPIO_InitStruct.Pin = GPIO_PIN_0;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_PULLUP;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);


/* USER CODE BEGIN MX_GPIO_Init_2 */


/* USER CODE END MX_GPIO_Init_2 */

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}


#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

           
5. Kondisi [kembali]
       
Pada tugas pendahuluan modul 1 saya mengambil percobaan 3 kondisi 4, yaitu:

    Buatlah rangkaian seperti gambar pada percobaan 3, Jika nilai potensiometer di bawah threshold 1800 maka motor DC berputar dengan duty cycle 50% dan buzzer berbunyi dengan frekuensi tinggi; jika nilai di atas threshold 3200 maka motor DC berputar dengan duty cycle 70% dan buzzer mati.

6. Video Simulasi [kembali]


7. Download file [kembali]



Tidak ada komentar:

Posting Komentar

LAPORAN AKHIR DEMO PROJECT PRAKTIKUM MIKROPROSESOR & MIKROKONTROLER

[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Komponen 4. Landasan Teori 5. Flowchart dan ...